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Abstract 
 

Recent studies have demonstrated the strong ability of deep convolutional neural networks 

(CNNs) to significantly boost the performance in single image super-resolution (SISR). The 

key concern is how to efficiently recover and utilize diverse information frequencies across 

multiple network layers, which is crucial to satisfying super-resolution image reconstructions. 

Hence, previous work made great efforts to potently incorporate hierarchical frequencies 

through various sophisticated architectures. Nevertheless, economical SISR also requires a 

capable structure design to balance between restoration accuracy and computational 

complexity, which is still a challenge for existing techniques. In this paper, we tackle this 

problem by proposing a competent architecture called Enhanced U-Net Network (EUN), 

which can yield ready-to-use features in miscellaneous frequencies and combine them 

comprehensively. In particular, the proposed building block for EUN is enhanced from U-Net, 

which can extract abundant information via multiple skip concatenations. The network 

configuration allows the pipeline to propagate information from lower layers to higher ones. 

Meanwhile, the block itself is committed to growing quite deep in layers, which empowers 

different types of information to spring from a single block. Furthermore, due to its strong 

advantage in distilling effective information, promising results are guaranteed with 

comparatively fewer filters. Comprehensive experiments manifest our model can achieve 

favorable performance over that of state-of-the-art methods, especially in terms of 

computational efficiency. 

 

Keywords: Single Image Super-resolution, Convolutional Neural Networks, Information 

Propagation, U-Net Block   
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1. Introduction 

Single image super-resolution (SISR), which aims to reconstruct a high-resolution (HR) 

image from its low-resolution (LR) counterpart, has attracted wide attention in computer 

vision community. Thanks to constant efforts, a bunch of real-world applications can be found 

owing to this method ranging from medical imaging [1], face recognition [2] to surveillance 

[3]. Besides, many electronic products with built-in camera are equipped with this technology 

to dramatically decrease the hardware cost. Back to SISR research regime, in addition to signal 

processing techniques [4], various learning-based image-resolution algorithms have been 

recently proposed to tackle this ill-posed problem (an underdetermined inverse problem), 

including sparse coding [5], random forest [6] and deep convolutional neural networks (CNNs) 

[7-13]. 

Among the aforementioned methods, deep CNNs based algorithms have demonstrated its 

advantage in boosting the performance, where peak signal-to-noise ratio (PSNR) and structural 

similarity index (SSIM) [14] are two generic measurements. More specifically, Dong et al. [7] 

firstly employed three convolutional layers to build a neural network, which achieved 

significant improvement compared with conventional algorithms. Later, Kim et al. [9] 

increased the depth of network via introducing a global residual directly from the input to the 

output, and state-of-the-art results were obtained by this revision. Then, Lim et al. built an 

extremely deep network EDSR [11] via stacking the residual block, which made slight changes 

to the original version [15] by removing batch normalization. In addition, SRFBN was 

proposed to refine low-level representations with high-level information, and a feedback block 

was designed to generate powerful high-level representations [16]. Residual non-local 

attention network for image super-resolution was proposed in [17], where trunk branch and 

non-local mask branch in each non-local attention block was designed. The trunk branch was 

used to extract hierarchical features. Non-local mask branches aimed to adaptively rescale 

hierarchical features with mixed attentions. Scale-wise convolutional network (SCN) 

proposed in [18] learnt to dynamically activate and aggregate features from different input 

scales in each residual block to exploit contextual information on multiple scales. Pan et al. 

proposed to impose the image formation constraint on the deep neural networks via pixel 

substitution, and the output of pixel substitution was further refined by the deep neural network 

in a cascaded manner [19].  

Generally speaking, feature maps from different layers contain different information 

frequencies. In other words, lower layers generate information in low-frequency and higher 

layers bring about relatively high-frequency one. The key concern is how to utilize diverse 

information frequencies to achieve efficient and accurate recovery, which is crucial to 

satisfying super-resolution image reconstructions. From this perspective, previous methods 

only attain information with limited frequency diversity at the last layer after repeated 

convolution operations. As a result, they failed to leverage information in different frequencies 

when reconstructing the final SR image, which intensively undermines SISR performance. 

To cope with this puzzle, especially after the emergence of dense connection network [20], 

several SISR architectures [13, 21] have adopted dense block as underlying bread and butter. 

Most of them achieved better performances compared with their former counterparts. Thereby, 

it is plausible that dense connection sheds lights on generating and manipulating multiple types 

of information once and for all, which is essential to accurate SISR. Indeed, in practice, the 

deeper each dense block is and the more blocks the structure possess, the more types of 

information it may extract and deliver. Additionally, Zhang et al. [21] has proven higher 

growth rate in dense blocks can improve the network performance in SISR. But these dense-
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connection based structures conceal their innate limitations when generating different types of 

information in network constructions. On one hand, it is consistently difficult to collect the 

information of excessive layers within one dense block because it would characterize 

computational complexity and memory consumption as unacceptable, which results in 

adequate network representation capacity intractable. On the other hand, the growth rate of 

dense blocks is extremely constrained by the GPU memory, which may also impact the quality 

of information in feature maps. 

Accordingly, instead of dense block, in this paper, we propose the enhanced U-Net block 

(EUB) to tackle all the drawbacks mentioned above. The architecture is shown in Fig. 2, which 

is inspired by U-Net [22] with some revisions. More specifically, skip concatenation with local 

residual learning constitutes the main part of the block, which means the convolutional layers 

on the right (deep) have access to the corresponding layers on the left (shallow). It is unrealistic 

to directly extract feature maps by constructing a neural network merely by this block, so EUB 

is just as building blocks to establish our final network. 

Two advantages can be immediately delivered by this specific design. Firstly, the 

concatenation of feature maps directly from the lower layers to the higher ones, i.e., 

information propagation between different layers, has been profoundly proved to be effective 

and essential to SISR task, as mentioned above. Secondly, the proposed block enables the 

network to develop fairly deep in depth, which always brings out permission on generating 

more types of information. Our network can successfully attain more fidelity compared with 

most of the advanced models, as shown in Fig. 1.  
 

 
Fig. 1.  Visualized results on ''img061'' image from ''Urban100'' with scaling factor ×2. Compared 

with the recently proposed state-of-the-art network RDN, EUN can recover more realistic visual 

results, which is more faithful to the ground truth. 
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In summary, the main contributions of this work can be unpacked in four folds: 

(1) We propose a neural network called the enhanced U-Net network (EUN) for SISR, 

which can combine multiple types of information to construct high quality super-resolution 

image. 

(2) We provide a new block EUB for SISR task, which can produce multi-type information 

via skip concatenation mechanism. Furthermore, the proposed block can also be employed to 

other image task, such as image denoising and image enhancement. 

(3) Due to its strong ability in distilling effective information, our SISR model can achieve 

a promising performance with comparatively fewer filters. Then, lightweight model is feasible. 

(4) To the best of our knowledge, it is the first time that using U-Net-style structure as 

fundamental block to develop a deep neural network for such specific task. 

2. Related Work 

SRCNN [7] was the first end-to-end CNNs based SISR algorithm, and achieved performance 

superior to previous traditional algorithms. In this work, an interpolated image was the input 

and three convolution layers were applied for feature extraction. However, it suffered from 

computation complexity introduced by the large interpolated input image. Thus, an accelerated 

version FSRCNN was proposed [8] by performing a transposed convolution layer to upscale 

the image before the output layer instead of the bicubic interpolation in the beginning. 

Nevertheless, there were only three convolution layers in both of the above works, and a 

straightforward improvement is to merely increase the network depth. Provided that deeper 

network retains larger receptive field to exploit more contextual information from LR images, 

VDSR [9] grew the network into twenty layers via skip connection, where residual could speed 

up the converging speed in training process and also improve the performance [15]. Again, 

Ledig et al. [10] proposed SRResNet to directly stack multiple residual blocks for their 

discriminator in SRGAN. Thanks to the powerful GAN mechanism, it achieved significantly 

improvement. Later, Lim et al. [11] optimized the residual network structure by removing 

unnecessary modules and performed well in both SSIM and PSNR. However, the contribution 

is limited to the final performance when only increasing the depth of network, not to mention 

the unacceptable parameter scale. 

Besides, Shi et al. proposed ESPCN [23], where an efficient sub-pixel convolution was 

proposed to upscale feature maps to HR output. Until now, sub-pixel convolution and 

transposed convolution have become two mainstreams for LR image upscaling in SISR, 

mainly because of their high efficiency in reconstructing images. Thanks to these upscaling 

techniques, we can abandon the pre-processing of LR image interpolation, which always ends 

up with details losing and computation complexity increasing. These two up-sampling 

methods can be found in almost all the up-to-date methods, such as EDSR [11], RDN [21], 

SRGAN [10]. 

On the other hand, in order to better tailor models to benefit from multi-layer features in 

CNNs, Huang et al. [20] proposed the dense connection to synthesize former information 

within the dense block. In addition, Tong et al. [13] developed SRDenseNet via stacking dense 

blocks, which were employed to extract high level features. Zhang et al. [21] improved the 

dense block via a residual shortcut to construct a new block, which was adopted to extract 

abundant local features. However, as mentioned above, the size and the number of dense 

blocks are extremely obsessed by the budget on GPU memory. 
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To facilitate this problem, we design a new U-Net based block to extract more information 

and directly connect more blocks in the overall structure, which is highly crucial to SISR. The 

details of our architecture will be shown in Section 3. 

3. Enhanced U-Net Network 

3.1 Enhanced U-Net Block 

The designed block is very similar to U-Net [22]. As shown in Fig. 2, the proposed block also 

consists of two parts except without bottleneck. Instead of the encoder-decoder mechanism, 

we repeatedly apply 3 × 3 convolution operation with padding rather than down-sampling, in 

order to preserve the image spatial size. More importantly, the frequency augment requirement 

of restoration turns out no pooling in SISR. Meanwhile, it inherits the skip concatenation from 

U-Net to combine information in different frequencies. In addition, the amounts of channels 

in each layer is identical, while it is inversely proportional to the feature map dimension in the 

original U-Net. A detailed comparison will be discussed in Section 4. Accordingly, we call 

our block the enhanced U-Net block (EUB). 
 

 
Fig. 2.  The architecture of enhanced U-Net block (EUB). The gray arrows denote the copy of feature 

maps, which are used for connection to other layers or local residual learning. 
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As a matter of fact, an EUB can be described by four components: left side layer, right side 

layer, the last layer and local residual shortcut. With slight alteration on terminology, we group 

every two cascaded convolution operations as one layer, so there are five layers in Fig. 2. 

Providing that the left side has N layers, the total number of layers will be 2𝑁 − 1, where the 

right side contains 𝑁 − 1 layers. The total number of convolution operations will be 4𝑁 − 1, 

because there is one more convolution at the end of the whole block. 

We choose LReLU [24] as the activation function, and the convolution operation with same 

padding is adopted to keep the final feature dimension unchanged. In practice, the number of 

layers within an EUB is a hyper-parameter. We will explain the details in Section 5.1. 

Left side layer It follows typical CNNs architecture and each layer consists of two repeated 

convolution operations with filter size 3 × 3. In particular, for the 𝑖𝑡ℎ layer of left side in the 

𝑑𝑡ℎ block, the output can be formulated as: 
 

𝐻𝑖,𝑑 = 𝜎(𝑊𝑖2,𝑑 ∗ 𝜎(𝑊𝑖1,𝑑 ∗ 𝐻𝑖−1,𝑑)                                           (1) 

 

where 𝐻𝑖−1,𝑑 denotes the output of the (𝑖 − 1)𝑡ℎ layer in the 𝑑𝑡ℎ block. Similarly, the input of 

the first layer in the 𝑑𝑡ℎ block is the output of the (𝑑 − 1)𝑡ℎ block. In addition, 𝑊.,.   is the 

parameters in the 3 × 3 filter. 

Right side layer Similar to the left side, each layer of the right side is also composed by 

two repeated convolution operations. Yet the input of each layer in the right side contains a 

concatenation with the correspondingly feature maps from the left side. For the 𝑖𝑡ℎ layer of 

right side in the 𝑑𝑡ℎ block, the output can be formulated as: 
 

𝐻𝑖,𝑑 = 𝜎(𝑊𝑖2,𝑑 ∗ 𝜎(𝑊𝑖1,𝑑 ∗ [𝐻𝑖−1,𝑑 , 𝐻2𝑁−𝑖,𝑑])                                (2) 

 

where [. , . ] refers to the concatenation of feature maps. 

Last layer We only apply one convolution operation for the last layer (pink in Fig. 2) with 

the activation function removed, which has been verified to be important to the improvement 

of representation ability in super-resolution task. Consequently, the formulation becomes: 
 

𝐻2𝑁,𝑑 = 𝑊2𝑁,𝑑 ∗ 𝐻2𝑁−1,𝑑                                                      (3) 

 

Local residual shortcut To further improve the representation ability, we introduce the 

residual connection to our design, which turns out to be the following formulation: 
 

𝐻𝑑 = 𝐻𝑑−1⨁𝐻2𝑁,𝑑                                                       (4) 

 

Here, 𝐻𝑑−1 represents the output of the (𝑑 − 1)𝑡ℎ block and operation ⨁ is element-wise 

summation. 

3.2 Network Structure 

Our proposed architecture is shown in Fig. 3, which is an end-to-end mapping from LR image 

𝐼𝐿𝑅  to HR image 𝐼𝐻𝑅 . In detail, it consists of three parts: shallow feature extraction sub-

network (FENet), feature transformation sub-network (FTNet) and up-sampling sub-network 

(UPNet). 
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Fig. 3.  The architecture of the proposed network, which consists of three parts: shallow feature 

extraction sub-network (FENet), feature transformation sub-network (FTNet) and up-sampling sub-

network (UPNet). The EUB-i in the network denotes the proposed block. 

 

Firstly, following the method in [10, 11], a convolution layer is employed for the shallow 

feature extraction sub-network. Specifically, the process can be expressed as: 
 

𝐻0 = 𝐹𝐸𝐹(𝐼𝐿𝑅)                                                            (5) 

 

Later on, the output 𝐻0 is used as the input of the following two sub-networks. On one hand, 

it is input to the feature transformation sub-network to obtain fine features further. On the other 

hand, it is served for the global residual learning to perform element-wise summation with the 

input of the up-sampling sub-network. 

Basically, in the feature transformation sub-network, multiple EUBs are cascaded by 

recurrent implementation. For the  𝑘𝑡ℎ EUB, the formulation can be expressed as: 
 

 𝐻𝑘 = 𝐹𝐸𝑈𝐵,𝑘(𝐻𝑘−1) = 𝐹𝐸𝑈𝐵,𝑘(𝐹𝐸𝑈𝐵,𝑘−1(⋯ (𝐹𝐸𝑈𝐵,1(𝐻0))))                         (6) 
  

where 𝐹𝐸𝑈𝐵,𝑘  denotes the 𝑘𝑡ℎ EUB operation with the output 𝐻𝑘 . Provided that there are M 

EUBs in the cascaded structure, the final output will be 𝐻𝑀. 

Next, a convolution operation is employed for further feature extraction: 
 

𝐻𝐹𝑇 = 𝐹𝐶𝑂𝑁𝑉(𝐻𝑀)                                                             (7) 

 

where 𝐻𝐹𝑇 can be regarded as the output from feature transformation sub-network (FTNet). 

Specifically, a global residual operation is conducted before the up-sampling sub-network, 

where the residual comes from the output of shallow feature extraction sub-network (FENet). 

Then, the output of global residual operation is upscaled by an upscale module: 
 

𝐻𝑈𝑃 = 𝐹𝑈𝑃(𝐻𝐹𝑇⨁𝐻0)                                                              (8) 
  

where 𝐹𝑈𝑃(. ) is an upscale function. Several methods have been proposed for image upscaling, 

such as transposed convolution [25] and sub-pixel convolution [23]. In this paper, we choose 

the sub-pixel convolution as our upscale module, which has been proven to be efficient with 

promising performance in SISR. 

The final reconstructed process is a convolution operation with upscaled result 𝐻𝑈𝑃 as its 

input: 
 

𝐼𝐻𝑅 = 𝐹𝐶𝑂𝑁𝑉(𝐻𝑈𝑃) = 𝐹𝐸𝑈𝑁(𝐼𝐿𝑅)                                                   (9) 

 

where 𝐹𝐸𝑈𝑁 denotes our total SISR model and 𝐼𝐻𝑅 is the output of final HR image. 
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3.3 Loss Function 

In fact, several loss functions are available for SISR, such as  𝐿1loss [11, 20], 𝐿2 loss [7, 8, 12] 

and adversarial loss [10]. 

In this paper, we regard SISR as a regression in pixel-level and construct the loss function 

through 𝐿1 loss, which has been proven to be more powerful in performance [11]. 

Suppose that the 𝑖𝑡ℎ  sample is {𝐼𝐿𝑅
𝑖 , 𝐼𝐻𝑅

𝑖 }, 𝑖 = 1,2, … , 𝑛 , where 𝑛  is the total number of 

training patches and 𝐼𝐻𝑅
𝑖  is the ground truth corresponding to 𝐼𝐿𝑅

𝑖 . 

Hence, the final loss function can be straightforward formulated as: 
 

𝐿(𝜃) = 1

𝑛
Σ𝑖=1

𝑛 ∥ 𝐹𝐸𝑈𝑁(𝐼𝐿𝑅
𝑖 ) − 𝐼𝐻𝑅

𝑖 ∥1                                     (10) 

 

where 𝜃 is the parameters of the proposed model. The details of optimization process are 

shown in Section 5.1. 

4. Structure Comparison 

Besides U-Net, another analogous structure to our work is RDN [21]. In this section, we will 

discuss the network characteristics and investigate the differences. 

4.1 Difference to U-Net 

Our basic block is inspired by the structure of U-Net [22], which is originally designed for 

image segmentation task. In order to leverage traditional U-Net to SISR task, we improve it in 

four aspects. First of all, we introduce the input-output residual path to U-Net to boost the 

circulation both the information flow in forward propagation and the gradient flow in back 

propagation. Moreover, the total training process can be more stable by this residual shortcut. 

The second aspect is that the up-sampling and down-sampling are removed compared with the 

original U-Net, which is specifically designed for SISR to avoid the details impairment 

incurred by down-sampling. Instead, we implement same padding to maintain the spatial 

dimension, so there is no cropping either. The third revision will be the replacement of ReLU 

activation function [26] with LReLU [24] and the removal of activation function at the last 

layer. We discover that the training process will be more stable with LReLU and a better 

performance can be obtained. Lastly, the number of channels in each layer is fixed in our 

architecture, which is inversely proportional to feature dimension in the original U-Net. This 

is mainly due to the removal of pooling and up-sampling, which are the principle reason for 

altering channel numbers, in order to balance the information loss. 

4.2 Difference to RDN 

Although the overall configuration between RDN and our network is similar, they are still 

distinguishable in three folds. Firstly, we only employ one convolution layer to extract shallow 

feature, while two repeated convolution layers are used in RDN. The experimental results 

demonstrate our setup helps to reduce parameters without weakening the performance. 

Secondly, the basic block employed to extract information is disparate. RDN is constructed 

based on DenseNet [20]. Our design enables our block to grow much deeper, which is in favor 

of generating diverse information. Hence, we only need one-tenth blocks of that in RDN to 

reach a comparable result. Thirdly, RDN employs global feature fusion (GFF) among different 

blocks, while only one convolution operation is hardly fusing all information from large 

amounts of previous features. Differently, we replace GFF with cascaded connection in our 
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model. As a result, our proposed method has a better performance than that of RDN. 

5. Experiments 

5.1 Implementation Details 

Datasets and metrics For training stage, we employ a newly released high-quality image 

dataset “DIV2K”, which is originally proposed for image restoration tasks and consists of 800 

training images, 100 validation images and 100 test images. We randomly select 5 images 

from 100 validation images to constitute the validation dataset. Meanwhile, we select five 

standard benchmark datasets: “Set5” [27], “Set14” [28], “Urban100” [29], “B100” [30] and 

“Manga109” [31] to evaluate final results, where PSNR and SSIM are two measurements 

computing values based on Y channel. Higher value in PSNR and SSIM means better 

performance. 

Block setups. In our proposed EUN, the input and output are color images with channel of 

3. We fix the kernel size of all the convolutional layers as 3 × 3, and employ same padding to 

keep the dimension unchanged after convolution operation. Furthermore, sub-pixel 

convolution is used to upscale the feature maps, which are extracted after the FTNet. In 

addition, following the definition in Section 3.1, we set 𝑁 = 5, then the total number of 

convolution layers within one EUB is 4𝑁 − 1 = 19. 

Training settings. In accordance with the algorithm in [11], we subtract the mean RGB 

values of all training images. In each training epoch, 16 RGB LR images are chosen as input 

with size of 48 × 48. In practice, the size of input image can be arbitrary as EBN only contains 

convolution layers. Furthermore, data augmentation is performed for the input with flipping 

horizontally or vertically and rotating 90°, 180° and 270°, which is similar to the method in 

[11]. We set the initial learning rate to 10−4, which is halved after every 200 epochs. The total 

network is training on the PyTorch framework [32] with ADAM optimizer [33], where the 

parameters setting is 𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜖 = 10−8 . In this paper, 𝛽1 , 𝛽2  and 𝜖  are 

experienced values. 

5.2 Study on Principle Hyper-parameters 

Now, we discuss the effects of different hyper-parameter selections in our model. In detail, 

two principle hyper-parameters are considered when construing the network: the number of 

EUBs (denoted as M) and the number of channels in every convolution layer in EUB (denoted 

as C). 

We evaluate the effect of each hyper-parameter in three settings: 1, 5 and 8 for the block 

number (M); 32, 64 and 128 for the channel number (C). We fix one hyper-parameter and 

evaluate the effect of the other one. The final results are shown in Fig. 4. Here, we randomly 

select 5 validation images from “DIV2K” to check the performance in 200 epochs, where the 

y-axis represents the average PSNR of the 5 images. 

From the result of Fig. 4(b), we can observe that larger C will result in a better performance, 

which is mainly because more filter parameters can increase the representation capacity of the 

network. Meanwhile, the effect of M to final performance is relatively small compared with 

that of C when decreasing the hyper-parameters. This can be observed from Fig. 4(a), where 

5 blocks can achieve comparable performance as that of 8 blocks. A main reason is that the 

parameter reduction is not in same scale. In this circumstance, the parameters will reduce in 

proportions of 1/2 when halving M and 3/4 when halving C respectively. 

More importantly, Fig. 4(a) indicates that our model can achieve a relatively good 
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performance with only one EBU, which justifies the high efficiency of the proposed block in 

extracting and utilizing information. Consequently, we can construct lightweight networks 

with comparable performances (see Section 5.4). 
 

 
                                           (a)                                                                            (b) 

Fig. 4.  Convergence results with different values in M and C, where (a) is the investigation for M and 

(b) is for C. The curves are obtained at × 2 scaling factor with 5 validation images from “DIV2K” 

5.3 Comparison with the Advanced Methods 

We compare the proposed EUN with 9 concurrent state-of-the-art methods: SRCNN [7], 

LapSRN [34], EDSR [11], D-DBPN [35], RDN [21], SRFBN [16], IFM [19], SCN [18], and 

RNAN [17]. Similar to the methods from [21, 34], the self-ensemble strategy is adopted to 

further improve the performance, which is denoted as EUN+. From the investigation above, 

large M and C would be likely to end up with a satisfying performance. However, considering 

fair comparison, we report the final results with a relatively moderate hyper-parameters setting, 

i.e. 𝑀 = 8, 𝐶 = 128, which demonstrates high effectiveness of the proposed network. Noting 

that RCAN [36] is excluded in the comparison, because of its excessive depth. 

Table 1 shows quantitative comparisons of different algorithms at × 2, × 3 and × 4 scaling 

factors, where we mark the best and the second best results in red and blue respectively. 

Compared with the state-of-the-art methods, our EUN+ outperforms all other networks on all 

datasets under all the scaling factors. In practice, our EUN exceeds other methods on most of 

the datasets without the self-ensemble strategy as well. Exceptionally, when scaling factor is 

×2, IFM achieves a second best on “Set5”, and RDN achieves a second best SSIM on “Set14”, 

while our EUN has beat IFM and RDN when scaling factor is ×3 and ×4. 
 

Table 1. Test results on benchmark datasets under various scaling factors.  

The best results are marked in red, and the second best ones are marked in blue. 

Dataset Scale Set5 Set14 B100 
Urban 

100 
Manga109 

Bicubic 
x2 
x3 
x4 

33.66/0.9299 
30.39/0.8682 
28.42/0.8104 

30.24/0.8688 
27.55/0.7742 
26.00/0.7027 

29.56/0.8431 
27.21/0.7385 
25.96/0.6675 

26.88/0.7388 
24.46/0.7349 
23.14/0.6577 

30.80/0.9339 
26.95/0.85562
4.89/0.7866 
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LapSRN 
x2 
x3 
x4 

37.52/0.9591 
33.82/0.9227 
31.54/0.8855 

33.08/0.9130 
29.96/0.8349 
28.19/0.7720 

31.80/0.8950 
28.82/0.7973 
27.32/0.7280 

30.41/0.9101 
27.07/0.8272 
25.21/0.7553 

37.27/0.9740 
32.19/0.9334 
29.09/0.8893  

SRCNN 
x2 
x3 
x4 

36.66/0.9542 
32.75/0.9090 
30.48/0.8628 

32.42/0.9063 
29.28/0.8209 
27.49/0.7503 

32.42/0.9063 
29.28/0.8209 
27.49/0.7503 

32.42/0.9063 
29.28/0.8209 
27.49/0.7503 

32.42/0.9063 
29.28/0.82092
7.49/0.7503 

EDSR  
 

x2 
x3 
x4 

38.11/0.9601 
34.65/0.9282 
32.46/0.8968 

33.92/0.9195 
30.52/0.8462 
28.80/0.7876 

33.92/0.9195 
30.52/0.8462 
28.80/0.7876 

33.92/0.9195 
30.52/0.8462 
28.80/0.7876 

33.92/0.9195 
30.52/0.84622
8.80/0.7876 

D-DBPN 
x2 
x3 
x4 

38.09/0.9600 
–/– 
32.46/0.8969 

33.85/0.9190  
–/– 
28.82/0.7860  

33.85/0.9190  
–/– 
28.82/0.7860  

33.85/0.9190 
 –/– 
28.82/0.7860  

33.85/0.9190 
– /– 
28.82/0.7860  

RDN 
x2 
x3 
x4 

38.24/0.9614 
34.71/0.9296 
32.47/0.8990 

34.01/0.9212 
30.57/0.8468 
28.81/0.7871 

32.34/0.9017 
29.26/0.8093 
27.72/0.7419 

32.89/0.9353 
28.80/0.8653 
26.61/0.8028 

39.18/0.9780 
34.13/0.9484 
31.00/0.9151 

SRFBN 
x2 
x3 
x4 

38.11/0.9609 
34.70/0.9292 
32.47/0.8983 

33.82/0.9196 
30.51/0.8461 
28.81/0.7868 

32.29/0.9010 
29.24/0.8084 
27.72/0.7409 

32.62/0.9328 
28.73/0.8641 
26.60/0.8015  

39.08/0.9779 
34.18/0.9481 
31.15/0.9160 

IFM 
x2 
x3 
x4 

38.26/0.9614 
34.75/0.9298 
32.56/0.8995 

33.99/0.9200  
30.61/0.8466 
28.80/0.7882 

32.37/0.9020  
29.29/0.8102 
27.73/0.7422 

33.09/0.9365  
28.97/0.8683 
27.73/0.7422 

39.26/0.9784  
34.14/0.9490 
27.73/0.7422 

SCN 
x2 
x3 
x4 

38.18 / 
0.9614 34.60 
/ 0.9295 
32.39 / 
0.8981 

33.99 / 0.9208 
30.50 / 0.8467 
28.74 / 0.7869 

32.39 / 0.9024 
29.26 / 0.8104 
27.69 / 0.7415 

33.13 / 0.9374 
28.79 / 0.8667 
26.50 / 0.8000 

35.10 / 0.9411 
31.28 / 0.8800 
29.18 / 0.8253 

RNAN 
x2 
x3 
x4 

38.17/0.9611 
–/– 
32.49/0.8982 

33.87/0.9207 
–/– 
28.83/0.7878 

32.32/0.9014 
–/– 
27.72/0.7421 

32.73/0.9340 
–/– 
26.61/0.8023 

39.23/0.9785 
–/– 
31.09/0.9149 

EUN(ours) 
x2 
x3 
x4 

38.23/0.9614 
34.72/0.9298 
32.57/0.8998 

34.05/0.9208 
30.62/0.8475 
28.85/0.7885 

32.38/0.9022 
29.30/0.8106 
27.76/0.7432 

33.08/0.9370 
28.91/0.8679 
26.73/0.8063 

39.32/0.9786 
34.26/0.94923
1.18/0.9175 

EUN+(ours) 
x2 
x3 
x4 

38.29/0.9616 
34.82/0.9306 
32.70/0.9012 

34.10/0.9213 
30.73/0.8494 
28.96/0.7905 

32.43/0.9027 
29.37/0.8119 
27.84/0.7448 

33.26/0.9384 
29.14/0.8716 
26.96/0.8112 

39.49/0.9789 
34.61/0.95083
1.55/0.9205 

 

In Fig. 5, we illustrate the visualized comparisons of different methods, where zebra from 

“Set14” and img-93 from “Urban100” are the test images. For the image zebra, we observe 

that all the other methods fail to recover its stripe texture in the bottom of the image, while 

both EUN and EUN+ can generate a continuous stripe. For the image img-93, our EUN can 

deliver a more realistic result to the ground truth, that is, the recovered lines by EUN and 

EUN+ are straighter and finer to the naked eyes. These results mainly benefit from the high 

efficiency in extracting and utilizing information. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 4, April 2021                          1257 

 

 

 
Fig. 5.  Visualized results on × 4 scaling factor with the image zebra from “Set14” and img-93 from 

“Urban100” respectively. The red rectangle boxes and the red arrows denote the regions with 

relatively clear distinctions. 

5.4 Results with Lightweight Network 

In line with the method in [13, 16, 37, 39], we also construct two lightweight networks EUNM 

and EUNS with the hyper-parameters setting as 𝑀 = 1 , 𝐶 = 64  and 𝑀 = 1 , 𝐶 = 32 

respectively. Because of the space limitation, we only choose several recently published state-

of-the-art methods as the baseline to illustrate our networks, including VDSR [9], IDN [38], 

CARN, CARN-M [37], SRFBN-S [16], and AWSRN-S [39], where all those methods do have 

mechanism as a tradeoff between model performance and computing complexity. 
 

Table 2. Test results on benchmark datasets under various scaling factors.  

The best results are marked in red, and the second best ones are marked in blue. 

Dataset 
Sca
le 

Parameters Multi-Adds Set5 Set14 B100 Urban100 

VDSR  
x2 
x3 
x4 

665K 
665K 
665K 

612.6G 
612.6G 
612.6G  

37.53/0.9587 
33.66/0.9213 
31.35/0.8838  

33.03/0.9124 
29.77/0.8314 
28.01/0.7674  

31.90/0.8960 
28.82/0.7976 
27.29/0.7251  

30.76/0.9140 
27.14/0.8279 
25.18/0.7524  

IDN 
x2 
x3 
x4 

579K 
587K 
600K 

133.4G 
60.1G 
34.5G  

37.83/0.9600  
34.11/0.9253 
31.82/0.8903  

33.30/0.9148 
29.99/0.8354 
28.25/0.7730  

32.08/0.8985 
28.95/0.8031 
27.41/0.7297  

31.27/0.9196 
27.42/0.8359 
25.41/0.7632 

CARN 
x2 
x3 
x4 

1592K 
1592K 
1592K 

222.8G 
118.8G 
90.9G 

37.76/0.9590 
34.29/0.9255 
32.13/0.8937  

33.52/0.9166 
30.29/0.8407 
28.60/0.7806  

32.09/0.8978 
29.06/0.8034 
27.58/0.7349 

31.92/0.9256 
28.06/0.8493 
26.07/0.7837 

CARN-M 
x2 
x3 
x4 

412K 
412K 
412K 

91.2G 
46.1G 
32.5G 

37.53/0.9583 
33.99/0.9236 
31.92/0.8903  

33.26/0.9141 
30.08/0.8367 
28.42/0.7762  

31.92/0.8960 
28.91/0.8000 
27.44/0.7304 

31.23/0.9193 
27.55/0.8385 
25.62/0.7694 
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SRFBN-S 
x2 
x3 
x4 

483K 
483K 
483K 

– 
– 
132.5G 

37.78/0.9597 
34.20/0.9255 
31.98/0.8923 

33.35/0.9156 
30.10/0.8372 
28.45/0.7779 

32.00/0.8970 
28.96/0.8010 
27.44/0.7313 

31.41/0.9207 
27.66/0.8415 
25.71/0.7719 

AWSRN-S 
x2 
x3 
x4 

397K 
477K 
588K 

91.2G 
48.6G 
37.7G 

37.75/0.9596 
34.02/0.9240 
31.77/0.8893 

33.31/0.9151 
30.09/0.8376 
28.35/0.7761 

32.00/0.8974 
28.92/0.8009 
27.41/0.7304 

31.39/0.9207 
25.57/0.8391 
25.56/0.7678 

EUNM 
(ours)  

x2 
x3 
x4 

1032K 
1216K 
1179K 

237.8G 
124.5G 
67.9G  

37.89/0.9601 
34.31/0.9268 
32.06/0.8940  

33.53/0.9168 
30.27/0.8409 
28.52/0.7803  

32.15/0.8994 
29.07/0.8044 
27.54/0.7349 

31.91/0.9263 
28.07/0.8505 
26.00/0.7837 

EUNS 
(ours)  

x2 
x3 
x4 

258K 
304K 
294K 

59.5G 
31.1G 
16.9G 

37.72/0.9597 
34.10/0.9249 
31.87/0.8902 

33.27/0.9150 
30.07/0.8370 
28.38/0.7761 

32.03/0.8979 
28.95/0.8015 
27.42/0.7307 

31.39/0.9211 
27.65/0.8413 
25.62/0.7703 

 

Table 2 gives PSNR and SSIM values of different networks on four benchmark datasets. 

Furthermore, we also present the amounts of total parameters and the numbers of Multi-Adds 

operations, similar to the methods in CARN and CARN-M. More specifically, the Multi-Adds 

is the total multiplications and additions, and computed based on the HR image with size 720p 

(1280 × 720). 

When comparing with other lightweight models, our EUNM can achieve the best average 

results on most datasets with scaling factors at ×2 and ×3. Moreover, EUNS achieves similar 

performance with comparatively fewer parameters and memory compared with CARN-M, 

SRFBN-S, and AWSRN-S. 

However, EUNM fails to maintain the similar advantage to CARN when the scaling factor 

is ×4, which is primarily due to the following two reasons. On one hand, CARN has more 

parameters than EUNM, thus results in better representation capacity. On the other hand, 

CARN is trained through multi-scale strategy, which not only contains the information from 

scaling factors at ×2 and ×3, but also on average 1/3 of the parameters are account for ×4 

super-resolution. Nevertheless, it is noticeable that not all the situations require a multi-scale 

super-resolution task. In those single scale scenarios, the parameters of CARN would increase 

to three times compared to that in Table 2. 

Besides, we also show the visualized comparison of different methods on img-96 from 

“Urban100” under scaling factor × 4 in Fig. 6. The edges of windows produced by most 

competitive methods are blurred, while our EUNM can recover clearer and sharper edges, the 

most faithful to the ground truth. 
 

 
Fig. 6.  Visualized results on the img-96 from “Urban100” with scaling factor at × 4. EUNM can 

recover a clearer and sharper edges of the windows compared to other networks, the most faithful to 

the ground truth. 
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5.5 Tradeoff Between Performance and Parameters 

Now we analyze the tradeoff between the performance and parameters of different methods. 

Fig. 7 illustrates the comparison of different methods with our EUNM and EUNS in terms of 

Multi-Adds and PSNR, where the x-axis represents the total Multi-Adds operations, and y-axis 

is the average PSNR on “Set5” dataset with scaling factor at × 2. The number of parameters 

is not displayed, because it will be proportional to the number of operations when LR image 

size fixing, except for VDSR. In particular, we only choose the methods whose total Multi-

Adds are less than 700G. 

Obviously, we can tell that our EUNM outperforms other methods list in the figures. Note 

that EUNM can exceed the state-of-the-art method CARN, whose Multi-Adds is almost 

equivalent with our EUNM. Furthermore, our EUNS exceeds the methods VDSR, SRCNN, 

LapSRN, CARN-M in performance with comparable Multi-Adds. For example, the Multi-

Adds of our EUNS is equivalent to SRCNN, while a visible increase in performance can be 

reached by EUNS. Besides, the performance of EUNS is equivalent to the recently proposed 

method AWSRN-S, whose Multi-Adds is larger than our EUNS. 
 

 
Fig. 7.  Tradeoffs between performance and the Multi-Adds of different methods on the “Set5” dataset 

with × 2 scaling factor. The parameter scale is proportional to Multi-Adds except for VDSR. 

6. Conclusion 

In this paper, we design an enhanced U-Net block (EUB) to efficiently extract abundant 

information from an image and propose a novel single image super-resolution model EUN 

based on our EUB. Taking advantage of multiple skip concatenations, EUB can successfully 

propagate information from lower layers to higher ones, which is also useful when stacking 

EUBs to form EUN. The proposed method achieves competitive results compared with 

advanced SISR neural networks in terms of PSNR and SSIM. Several result comparisons 

confirm this improvement, even in visualized sense. Meanwhile, in order to deploy a 

lightweight network, we carefully set the hyper-parameters to extremely reduce the inference 

time, as well as strikingly maintain comparable performance. Hence, the proposed EUN could 

greatly facilitate real-world applications. 
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